

GCE A LEVEL CHEMISTRY

S21-A410

Assessment Resource I

Physical and Inorganic Chemistry

1.	(a)	Draw a dot and cross diagram for the molecule BF ₃ .	[1]
	(b)	Use valence shell electron pair repulsion theory to explain why ${\rm BF_3}$ has a trigonal plastructure.	anar [1]

2.		ion of excess potassium iodide to 25.0 cm ³ of aqueous copper(II) sulfate produces a bro on of iodine and a white solid.	wn
	(a)	Give the formula of the white solid.	[1]

(b) The iodine is titrated using sodium thiosulfate solution of concentration 0.200 mol dm⁻³.

$$2S_2O_3^{2-} + I_2 \longrightarrow 2I^- + S_4O_6^{2-}$$

The experiment is repeated and the results are shown below.

	Titration 1	Titration 2	Titration 3	Titration 4	Mean titre
Volume of sodium thiosulfate solution / cm ³	24.40	23.90	23.80	23.85	23.85

(i)	Suggest why the value from titration 1 is not used in calculating the mean titre.	[1]
(ii)	Calculate the number of moles of iodine produced from each 25.0 cm ³ of aqueo copper(II) sulfate solution.	us [1]

Moles of iodine = mol

3. Iron metal reacts with chlorine to form iron(III) chloride and it reacts with iodine to form iron(II) iodide. Use the standard electrode potentials below to explain this difference. [2]

	Standard electrode potential, E^{θ}/V
$Cl_2(aq) + 2e^- \rightleftharpoons 2Cl^-(aq)$	+1.36
$Fe^{3+}(aq) + e^{-} \longrightarrow Fe^{2+}(aq)$	+0.77
$I_2(aq) + 2e^- \rightleftharpoons 2I^-(aq)$	+0.54

			• • • • • • • • • • • • • • • • • • • •
***************************************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	 	

(a)	The	electronegativity va	•	(CH ₃ Li). nents present	in methyllithiu	m are given below.
	Eler	ment	Н	Li	С	
	Elec	tronegativity	2.20	0.98	2.55	
	(ii)	State which type your answer.	of bond will for	m between litl	hium and carb	on. Give a reason for
		your answer.				ניו

CH₃Br + 2Li — ► CH₃Li + LiBr

(i) Calculate the atom economy for this method of producing methyllithium.

Atom economy = ...

[2]

aqueous solvent.

(ii) An alternative method of synthesising methyllithium is by using chloromethane as a source of the methyl group. Use the information given below to suggest which method is better for the production of methyllithium.

You should include two advantages and one disadvantage for your chosen method. [4]

	CH ₃ Cl	CH ₃ Br	CH ₃ Li	LiCl	LiBr
M _r	50.5	94.9	21.9	42.4	86.8
Melting temperature/°C	-97	-94			
Boiling temperature/°C	-24	+4			
Solubility in solvent used	very soluble	very soluble	soluble	insoluble	partly soluble
Relative cost per gram	1.5	1.0			

	Atom economy for production of methyllithium from chloromethane = 34.0 %
-1	Made IPA in a line of the second seco
c)	Methyllithium is a very strong base.
	State what is meant by the term strong base.

(d)	Whe	en methyllithium is added to water the reaction below occurs.	
		$CH_3Li(sol) + H_2O(l) \longrightarrow LiOH(aq) + CH_4(g)$	
	wate	ten 10.00 cm ³ of a non-aqueous solution of methyllithium is added to 250.0 ter a total volume of 391.8 cm ³ of methane is produced at a temperature of 298 ressure of 1 atm. The pH of the aqueous layer formed is 12.8.	cm³ of 3K and
	You	u may assume that LiOH is totally insoluble in the non-aqueous solvent.	
	(i)	Use the volume of gas produced to calculate the concentration of the methyllithium solution. Give your answer to an appropriate number of significant.	
		You must show your working.	[3]
		Concentration = mo	oldm ⁻³
	(ii)	Use the pH to calculate the concentration of the initial methyllithium solution	1.
		You must show your working.	[3]
		Concentration = mo	oldm ⁻³

	State which of these two methods gives the more accurate value. Give a reason for your answer. [2]
(iv)	The reaction between methyllithium and water is exothermic. The enthalpy change of the reaction is –198 kJ mol ⁻¹ .
	Calculate the expected temperature rise when 0.010 mol of pure methyllithium is added to 250.0 cm ³ of water. [3]
	Temperature rise =°C
	- STILL PORTUGE TO STATE OF THE PROPERTY OF TH

5.	impo		ion of carbon monoxide to carbon dioxide in the presence of suitable catalysts is method of removing this toxic gas from gas mixtures produced during incomp n.	
			2CO + O ₂ 2CO ₂	
	of a	transit	alysts for this reaction are produced by soaking aluminium oxide pellets in a solution metal chloride followed by drying. Two suitable transition metal chlorides chloride and ruthenium chloride.	
	(a)	Thes	se catalysts are examples of heterogeneous catalysts.	
		(i)	State what is meant by <i>heterogeneous</i> in this context.	[1]
		(ii)	Give another example of a heterogeneous catalyst, clearly identifying the reacthat it catalyses.	tion [1]

(b) Some information regarding these catalysed reactions is given below.

	Activation energy / kJ mol ⁻¹	Frequency factor, A / moldm ⁻³ s ⁻¹
palladium catalyst	61.7	6.1×10 ⁹
ruthenium catalyst	79.4	14.1×10 ⁹

ruthenium catalyst		m catalyst	79.4	14.1 × 10 ⁹		
(i)	by pa	a temperature of 600 K, the value of the rate constant for the reaction catalysed palladium is 2.58 × 10 ⁴ . Give the unit for this rate constant.				
	II.			r the ruthenium catalyst uch of these two catalysts is		
(ii)			ditions the oxidation of car	bon monoxide can occur v	without a	
			rate = k[CO][O ₂]			
			mechanism for the uncata mining step clearly.	lysed oxidation of carbon m	onoxide. [3]	

(c)	Carbon monoxide is classed as a reducing agent.				
	(i)	State what is meant by a <i>reducing agent</i> . [1]			
	(ii)	Explain why carbon monoxide is a reducing agent whilst the corresponding oxide or lead, PbO, is not. [2]			
